Colville River Fecal Coliform Total Maximum Daily Load Study

The Colville River Basin

- Drains 1016 sq mi of land only 8 sq mi outside of Stevens County
- The basin makes up 41% of Stevens County land area
- Averages 17.2 inches of rain per year with 2/3 falling between October and March

Colville River Discharge Statistics

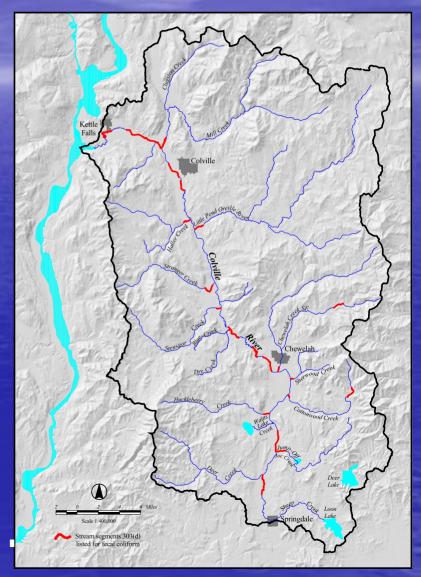
- Highest flow occurs in April averaging 853 cubic feet per second (cfs) at Kettle Falls
- Lowest flow occurs in August averaging 90.2 cfs at Kettle Falls
- The average annual discharge at Kettle Falls is 311 cfs
- Chewelah Creek, Little Pend Oreille River, and Mill Creek account for over 50% of the flow

Colville River Basin Land Cover

- Forests/Shrublands/Woody Wetlands/Upland
 Grasses 82%
- Agriculture 10%
- Barren Ground 6%
- Urban/Residential/Commercial/Industrial/Tran sportation 1%
- Open Water/Herbaceous Wetland 1%

Problem Statement

 High bacteria counts during summer months violate water quality standards and do not support beneficial uses like swimming and fishing

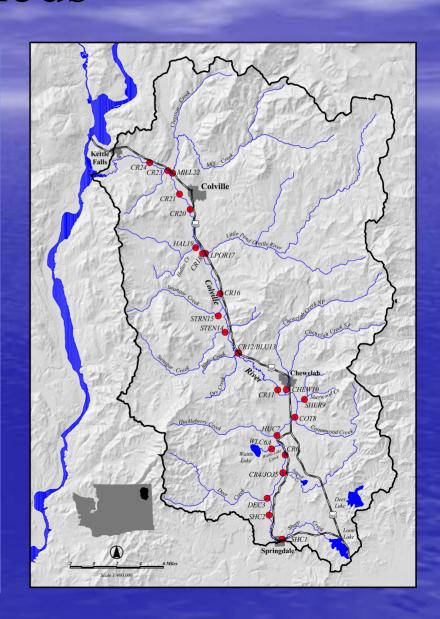


The Class A Water Quality Standard for Fecal Coliform in Surface Waters

• Freshwater – fecal coliform organism levels shall both not exceed a geometric mean value of 100 colonies/100 mL, and not have more than 10 percent of all samples obtained for calculating the geometric mean value exceeding 200 colonies/100 mL.

1998 303(d) List for Fecal Coliform

- 9 Colville River Segments
- 15 Tributary Segments

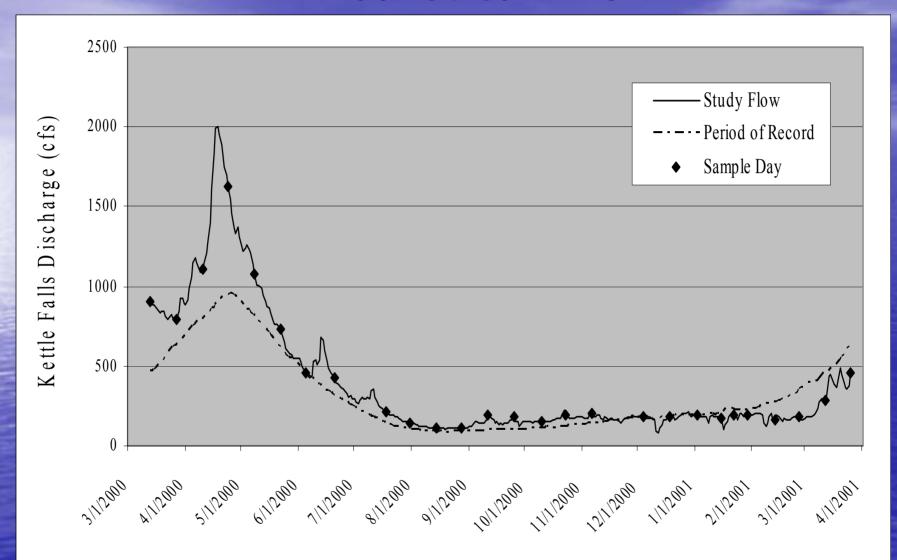

Colville River and tributary segments 303(d) listed for fecal coliform.

Goals and Objectives

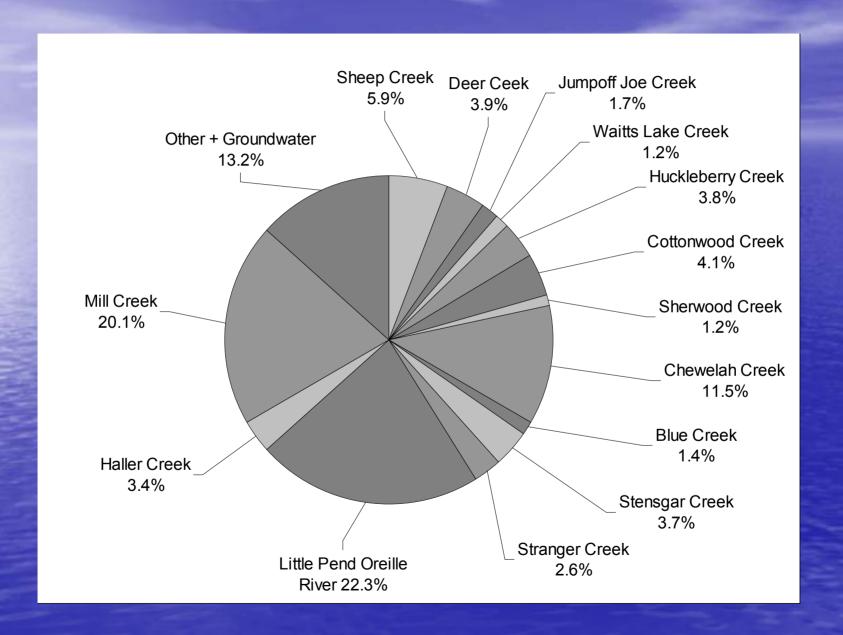
- Characterize FC bacteria density and loads in the Colville River and tributaries;
- Identify relative contributions of FC loading from near-shore and tributaries to the Colville River; and
- Establish load reductions from nonpoint sources to support a TMDL as required under section 303(d) of the federal Clean Water Act

Methods

- FC samples were collected from 10 mainstem and 15 tributary sites
- Sampling occurred every two weeks from March 2000 through March 2001
- Flow data was used from the USGS station at Kettle Falls and five gaging stations developed by Ecology


Quality Assurance/Quality Control

- 10-20% of all samples were replicated
- The percent difference (RMSCV) was calculated for sample pairs
- Field replicates had a 28% difference for the study


Study Period Discharge

- Average annual flow at Kettle Falls is 311 cfs
- Mean study flow was 394 cfs 27% above average
- Chewelah Creek, Little Pend Oreille River, and Mill Creek accounted for an average of 54% of Colville River discharge at Kettle Falls during the study
- Sheep Creek, a headwater stream, is the only other stream with a greater than 5% contribution at 5.9%

Annual Stream Flow

Colville River Water Balance March 2000 - March 2001

Water Quality Results

- All mainstem sites except Colville River at Greenwood Loop Road (CR24) violated both levels of the WQ standard for fecal coliform during summer months
- All tributary sites except Sheep Creek in Springdale (SHC1) violated the 2nd level of the WQ standard for fecal coliform during summer months

June through September is the period with the highest FC counts

- The Colville at Betteridge Road (CR4) and the Colville at Valley (CR6) had the highest FC counts in the upper basin (above RM 50)
- Blue Creek (BLU13) and Stranger Creek (STRN15) had the highest FC counts in the middle basin (from RM 30 to RM 50)
- The lower basin had summer problems but dilution likely moderated higher values

Table B1. Fecal coliform results for the Colville River Fecal Coliform TMDL Study, March 13, 2000 - March 27, 2001.

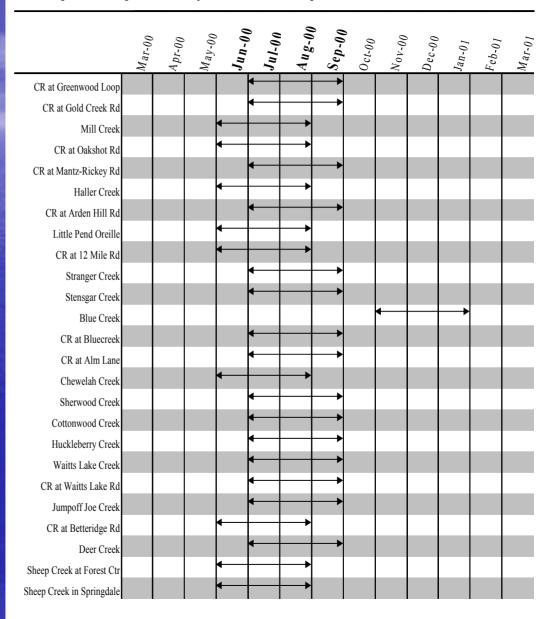
	R 24	R 23	MIL_{L22}	$C_{R 2I}$	CR 20	HAL 19	CR 18	LPOR 17	c _{R 16}	STRN 15	STEN 14	BLU_{I3}	CR 12	$C_{R\ II}$	$C\!H\!EW_{IO}$	SHER 9	COT_8	HU_{C} 7	WLC_{6A}	R 6	JOJS	CR 4	DE_{C3}	SCH_2	SCH_I
DATE	Ĕ	\mathcal{E}																							
3/13/2000	6	3U	6	11	6	1U	6	2	8	14	47	110	15	9	5	13	4	1U	14	3	1U	3	6	8	5
3/27/2000	5	16	4	5	5	2	6	4	8	13	15	150	21	5	6	7	5	20	42	7	12	15	4	19	20
4/10/2000	40	15	29	14	15	24	27	1	24	30	29	120	38	4	35	1U	16	15	1U	15	1U	30	4	28	24
4/24-25/00	23	13	29	23	22	10	39	8	26	65	68	270	39	28	28	6	62	5	1	54	6	95	1U	120	46
5/8-9/00	17	10	22	8	30	6	24	17	39	150J	53	380	24	38	36	13	15	16	60	36	31	56	3	32	27
5/22-23/00	54	90	110	53	61	54	63	23	110	150	12	100	170	120	130	31	55	14	11	270J	60	260J	8	54	22
6/5-6/00	61	59	180	69	86	83	120	65	170	330	67	850	210	230	200	88	56	25	26	260	39	360	6	80	19
6/19-20/00	88	44	51	110		3500J	43	37	69	390	63	420	180	84	88	24	45	57	21	370	100	480	66	180	44
7/17-18/00	92	130	120	92	170	120	360	140	180	1500	210	120	220	210	140	100	130	84	89	380	180	560	120	760	82
7/31-8/1/00	44	140	110	190	330	590		210	220	1800	660	180	280	260	230	230	170	280	870	700	330	1400	530	770	160
8/14-15/00	81	140	96	96	250	170	130	110	130	1200	640	220	140	240	220	54	66	300	600	530	180	1100	100	210	120
		180	240	230	150	140	140	40	180	750	170	300	180	160	51	29	320	260	150	400	220	340	23	170	31
		590	84	120	110	26	260	37	320	700	360	190	360	410	160	140	190	110	420	390	96	480	340	170	21
9/25-26/00	57	38	41	46	96	23	29	25	34	450	31	810	110	120	88	640J	57	29	120	250	49	260	46	49	19
10/10-11/00	10	3	35	2	21	4	31	27	57	85	80	77	68	43	100	23	30	24	26	31	11	210	85	39	10
10/23-24/00	10	9	27	1	84	17	44	15	39	57	55	26	57	92	29	2	120	28	15	44	6	150	230	31	8
11/6-7/00	2	3	110	1U	16	56	27	8	24	51	140	2200	27	26	33	1700	26	49	4	29	1U	54	9	20	6
12/4-5/00	54	2	41	1U	4	2	6	5	96	2000J	9	50	35	44	16	3	6	4	64	140	2	120	1U	55	49
12/18-19/00	1U	2	51	1U	**	6	66	15	150	31	14	140	200	**	66	4	13	16	**	88	1U	80	8	45	52
1/2-3/01	42	55	120	120	5	8	9	20	31	92	46	790J	34	84	73	5	37	8	8	540	6	48	4	23	41
1/15-16/01	1U	1U	10	1U	1U	18	2	26	8	14	8	440	19	28	25	10	12	12	22	170	3	43	3	34	33
1/22-23/01	3	1	4	2	1	5	1	2	3	11	8	100	33	36	29	43	34	2	11	150J	5	37	5	49	26
1/29-30/01	33	6	120	3	17	6	28	24	11	9	32	3700J	26	31	15	1000J	11	3	11	250	29	34	1	36	37
2/13-14/01	36	25	3	65	10	7	13	16	14	86	15	220	9	2	47	26	19	2	1	4	4	2	2	23	44
2/26-27/01	14	4	8	48	10	12	9	40	2	19	5	9	88	1U	1U	2	7	51	4	58	5	12	1U	39	37
3/12-13/01	12	27	98	120	8	7	17	20	9	41	31	20	18	38	36	5	45	2	18	95	2	39	1	13	10
3/26-27/01	89	29	27	20	15	2	20	10	10	57	33	43	9	23	17	5	3	6	37	23	3	21	13	33	13

^{** =} No sample - stream frozen

U = Analyte not detected at the detection limit shown

J = The number reported is an estimate, although the "true" value may be greater than or equal to the reported value

Bolded = Result is greater than the first criterion of the Class A water quality standard for fecal coliform bacteria (100 cfu/100 mL)


⁼ Result is greater than the second criterion of the Class A water quality standard for fecal colidform bacteria (200 cfu/100 mL)

Critical Conditions

- The period when WQ is at it's worst
- The period implementation measures target
- For the Colville River this is the June through September months, except for Blue Creek (BLU13)

Highest three month geometric mean

The rolling three month geometric mean period for bacteria loading - critical condition.

Colville River FC reductions needed to meet WQ standards

- Load reductions range from 3% to 89%
- Based on two and three month rolling geometric means and 90th percentiles
- "Statistical Theory of Rollback" provides a percent reduction to meet WQ standards
- When applied to critical conditions it should be protective year around

Target reductions needed for the Colville River

Site	Geometric Mean	90 th Percentile	Target Geometric Mean	Required Reduction
Betteridge Rd – CR4	736	1681	81	89%
Waitts Lake Rd – CR6	487	1220	78	84%
Gold Creek Rd – CR23	154	652	46	70%
Oakshot Rd - CR21	140	473	59	58%
Bluecreek - CR12	199	461	86	57%
Arden Hill Rd - CR18	146	453	64	56%
Alm Lane - CR11	217	381	98	55%
12 Mile Rd - CR16	174	427	80	54%
Mantz-Rickey Rd - CR20	0 214	362	98	54%
Greenwood Loop - CR24	4 93	205	90	3%

Tributary FC reductions needed to meet WQ standards

- Load reductions range from 4% to 95%
- Based on two and three month rolling geometric means and 90th percentiles
- "Statistical Theory of Rollback" provides a percent reduction to meet WQ standards
- When applied to critical conditions it should be protective year around

Target reductions needed for tributaries of the Colville River

Site	Geometric Mean	90 th Percentile	Target Geometric Mean	Required Reduction
Haller Creek - HAL19	379	3387	19	95%
Sherwood Creek - SHER9	122	3403	6	95%
Blue Creek - BLU13	411	3261	25	94%
Stranger Creek - STRN15	1249	2385	100	92%
Sheep Creek - SHC2	380	1272	57	85%
Waitts Lake Ck - WLC6A	289	1168	49	83%
Stensgar Creek - STEN14	350	1010	70	80%
Deer Creek - DEC3	132	773	33	75%
Huckleberry Creek - HUC7	207	497	83	60%
Jumpoff Joe Creek - JOJ5	220	396	99	55%
Cottonwood Creek - COT8	147	358	81	45%
Chewelah Creek - CHEW1	0 154	338	91	41%
Mill Creek - MILL22	132	239	99	25%
Little PO River - LPOR17	107	264	80	25%
Sheep Creek - SHC1	84	209	81	4%

Margin of Safety

- A required component of a TMDL
- Accounts for the uncertainty of the analysis
- Expressed explicitly by a set aside or implicitly by using conservative assumptions

Follow-up Monitoring and Evaluation

- Assesses adequacy of control measures
- Guides future control actions
- Assures management measures are successful in meeting WQ standards

Conclusions and Recommendations

- All study river segments and tributaries require bacteria reductions during the dry season. Target reductions range from 3% to 95%.
- Further investigation will be needed in sub-basins and along the riparian corridor to develop site specific prescriptions for abatement measures.
- Farm plans should be developed for locations where sources are identified.
- The most obvious sources of bacteria inputs were from cattle directly accessing the streams. Grants and cost share loans should be supported for implementation of fencing and watering facilities.

- The area upstream and downstream of the CR at Betteridge Road should be evaluated as a priority. The CR4 (89%) and CR6 (84%) mainstem sites are the highest for reduction percentages.
- All mainstem segments had higher bacteria loads than tributaries.
- When setting priorities for corrective actions a ranking matrix should be used that includes issues like: degree of standard exceedance; bacteria load; 303(d) listing; recreational potential; local interest; public access; fish use and species.

- Colville and Chewelah WWTPs were not included in the study. Recent upgrades and reissue of permits should maintain compliance with WQ standards. The monitoring reports from the facilities should be reviewed annually to assure the new permits are not being violated.
- A long term monitoring program for the basin should be developed and supported. The effectiveness of controls need to be followed to assure compliance with TMDL targets.

Special Thanks to the Stevens County Conservation District

 Charlie Kessler, Tom Ledgerwood, and Claudia Michalke

